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ABSTRACT
The present study aimed  to confirm the  biorelevance of the pH-gradient  biphasic dissolution model for three 
ketoconazole (KTZ) formulations with different excipients and establish an in vivo-in vitro correlation (IVIVC). 
Experiments were performed with a pH-gradient biphasic dissolution model for drug absorption, consisting of a 
sequential pH-gradient in the aqueous phase and octanol phase, representing the stomach, duodenum, jejunum and 
ileum compartments, and small intestinal membrane, respectively. Conventional single phase in vitro dissolution tests 
with and without pH-shift lacked discrimination. The pH-gradient biphasic dissolution test showed discriminatory power 
for the three KTZ formulations, with the same ranking of drug release in vitro and in vivo. A good IVIVC was established 
between in vitro release data in octanol and in vivo data in rats, demonstrating the in vivo biorelevance of the pH-
gradient biphasic dissolution model. This study presents a promising approach for predicting in vivo performance of 
weak bases containing formulations in early drug development.       
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INTRODUCTION

O  ral absorption of weakly basic drugs is a 
dynamic complex process mainly influenced 
by physicochemical properties of the drug and 

physiological conditions in the gastrointestinal (GI) tract, 
especially for dynamic pH conditions. The pH values in 
the fasted stomach usually in the range of 1.5–2.0, with 
a transit time of 0.5–2 h (1, 2). Average pH values in the 
fasted upper small intestine are 5.0–7.5, including pH 
5.0–6.5 in the duodenum, pH 6.0–7.0 in the jejunum, 
and pH 6.5–7.5 in the ileum (3, 4). Transit time in the 
small intestine is often considered to be approximately 4 
h (5). Weakly basic drugs can quickly dissolve at gastric 
pH, but not at intestinal pH following a supersaturation-
precipitation process in the small intestine, which shows 
limited absorption. Conventional in vitro dissolution tests 
lack biorelevancy with in vivo dissolution (6, 7). Many 
attempts have been made to overcome the limitations 
and better predict bioperformance of oral products by 
creating different biorelevant dissolution methods (8–11). 

The biphasic dissolution test has exhibited improved in 
vivo prediction by incorporating an absorptive sink. In 
this technique, the drug first dissolves in the aqueous 
phase to simulate dissolution at gastric pH, then the 
dissolved drug immediately partitions in the organic 
phase to mimic drug absorption through the intestinal 
membrane. This biphasic dissolution model enables the 
evaluation of various formulation factors such as particle 
size, drug loading, wettability, polymorphic forms, and 
drug precipitation (12–19).

In our previous report, a pH-gradient biphasic dissolution 
system was  developed  through an orthogonal test 
design with three factors and three strengths of 
ketoconazole (KTZ) to simulate pH  conditions in the 
stomach, duodenum, and jejunum and ileum in the 
aqueous phase and to mimic an intestinal absorptive sink 
in the octanol phase (20). The aim of the current study 
was to confirm the biorelevance of the pH-gradient 
biphasic dissolution model for three KTZ formulations 
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with different excipients compared to conventional 
dissolution tests. Subsequently, an animal study with rats 
was also performed to evaluate the relationship of the in 
vitro and in vitro dissolution profiles.   

METHODS 
KTZ was purchased from Wuhan Dahua Weiye Medicine 
Chemical Co., Ltd. (Wuhan, China). Lactose monohydrate 
was donated by PinTech Pharmaceutical Co., Ltd. 
(Shanghai, China). β-cyclodextrin (β-CD), microcrystalline 
cellulose (MCC), 1-octanol, hydrochloric acid (HCl), sodium 
dihydrogen phosphate dihydrate, sodium hydroxide 
(NaOH), tribasic sodium phosphate, and sodium chloride 
were obtained from Sichuan Kelun Pharmaceutical Co., 
Ltd. (Chengdu, China). Hard gelatin capsules (size 0) were 
donated by Suzhou Capsugel Ltd. (Suzhou, China). All 
other reagents used were of analytical grade.

Preparation of KTZ Formulations 
Three formulations were prepared by mixing 100-mg 
KTZ with lactose, β-CD, and MCC at a weight ratio of 1:1. 
Powder blends were filled in size 0 hard gelatin capsules.

Conventional USP Single-pH Dissolution Test 
The compendial dissolution test was performed in 900 
mL 0.1 N HCl at 50 rpm and 37 °C in a USP apparatus 2 
(paddle) (RCZ-8, Shanghai Huanghai Drug Inspection 
Instrument Co., Ltd, Shanghai, China) (n = 3). Samples were 
collected at predetermined time intervals and measured 
using a UV-spectrophotometer (T6, Beijing Puxi General 
Instrument Co. Ltd, Beijing, China) at 224 nm.

Conventional USP pH-Shift Dissolution Test 
To evaluate the effect of pH change, drug release was 
assessed according to the USP general chapter <711> 
enteric dissolution test (method A) in USP apparatus 2. 
The KTZ formulations were first tested in 750 mL of 0.1 N 
HCl for 2 h followed by a pH adjustment to 6.8 ± 0.05 by 
adding 250 mL of 0.2 M tribasic sodium phosphate (n = 3). 
Samples were withdrawn at predetermined time points 
and used for UV spectrophotometry.

pH-gradient Biphasic Dissolution Test 
Based on our previous study, the developed pH-gradient 
biphasic dissolution test (Fig. 1) was used to assess 
three KTZ formulations (20). Briefly, each formulation 
containing 100 mg KTZ with a sinker was added into 
250 mL of gastric buffer (pH 2.0) for 30 min, then the 
aqueous medium was adjusted to pH 5.5 to mimic the 
duodenum by adding 5 M NaOH and 100 mL of pre-
saturated 1-octonal as the upper organic phase to 
simulate the intestinal membrane (n = 3). Subsequently, 
the aqueous phase was readjusted to pH 6.5 to mimic 
the jejunum for 2 h, then the final pH was increased to 

6.8 for 1 h. The rotating speed was set to 30 rpm. The 
temperature was maintained at 37 °C. Samples were 
withdrawn manually from both the aqueous and organic 
phases at predetermined time points and replaced with 
the same volume of fresh media. The aqueous samples 
were passed through a 0.45-µm Durapore membrane 
filter, and the organic samples were centrifuged at 12,000 
rpm for 20 min (TG-16, Gongyi Yuhua Instrument Co. 
Ltd, Gongyi, China). Drug concentrations in aqueous and 
organic phases were determined by UV spectrometry at 
224 nm.

In Vivo Studies 
Animal studies were approved by the local ethical 
committee at the Third Military Medical University, 
Chongqing, and performed in accordance with guidelines 
of experimental animal care. Female Sprague-Dawley 
rats weighing 200–250 g were fasted for 12 h before drug 
administration. Each KTZ formulation was dispersed in 
deionized water prior to dosing and administered by oral 
gavage at a dose of 45 mg/kg (n = 5). Blood samples were 
collected from retro orbital choroid plexus under mild 
anesthesia at 0, 1, 2, 3, 4, 6, 8, 12, and 24 h after dosing 
and placed into heparin pretreated tubes. The blood 
samples were centrifuged at 3500 rpm for 10 min, and 
plasma was stored at –20 °C until further analysis.

Plasma concentration of KTZ was determined by high-
performance liquid chromatography (HPLC) analysis. 
Samples were analyzed using the Agilent HPLC system 
(1260 Infinity, Agilent, Germany) equipped with an 
Ultimate XB-C18 column (250 × 4.6 mm, 5 μm, 120 Å) 
maintained at 25 °C. The mobile phase was a mixture of 
acetonitrile and 0.02 M phosphate buffer at pH 6.8 (65:35, 

Figure 1.  Schematic diagram of a pH-gradient biphasic dissolution system. 
Reprinted from (20).
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v/v) at the flow rate of 1.0 mL/min, and the UV detector 
was set to 254 nm (21, 22).

Pharmacokinetic Analysis 
The pharmacokinetic (PK) parameters, including area 
under the plasma concentration time curve from 0 to 
24 h (AUC0–24 h), the time to reach maximum plasma 
concentration (Tmax), and the peak plasma concentration 
of drug (Cmax) after administration of KTZ formulations in 
rats were determined using a non-compartmental model 
analysis by a freely available add-in program for Microsoft 
Excel, PK Solver (23).

Statistical Analysis 
All data were expressed as mean ± standard deviation 
(SD). The results were compared by one-way analysis 
of variance (ANOVA), and p < 0.05 was considered as 
statistically significant.

RESULTS AND DISCUSSION
Conventional USP Single-pH Dissolution Test
As shown in Figure 2, all three KTZ formulations had similar 
dissolution profiles in the single-pH dissolution test, and 
they dissolved more than 80% at 10 min. The compendial 
dissolution test lacked discrimination between these KTZ 
formulations due to fast drug dissolution.

Conventional USP pH-Shift Dissolution Test 
KTZ is classified as a weakly basic Bipharmaceutical 
Classification System (BCS) class II drug with a diphasic pKa 
(2.94 and 6.51) and a log P value of 3.73, so drug solubility 
in a pH-dependent manner is reported as 20.3 mg/mL in 
simulated gastric fluid (pH 1.2) and 6 µg/mL in simulated 
intestinal fluid (pH 6.8), respectively (24). Thereby, a pH-
shift dissolution test was used to assess the influence 
of pH change throughout the GI tract. All three KTZ 

formulations showed similar dissolution profiles in 0.1 N 
HCl for the first 2 h. However, drug concentration of KTZ 
decreased after the pH change, which was attributed to 
fast precipitation due to much lower solubility at neutral 
pH (Fig. 3). Unexpectedly, drug concentration at pH 6.8 
was almost constant over time. The dissolved excipents 
in the phosphate buffer would facilitate dissolution of 
precipitated KTZ, leading to a concentration plateau, or 
the interactions between KTZ and lactose, β-CD, or MCC 
might occur via hydrogen bonding to delay crystallization 
(25, 26). 

pH-Gradient Biphasic Dissolution Test 
Each formulation (containing 100 mg drug) maintained 
sink conditions (< 20% of drug solubility (Cs = 5.6 mg/mL) 
in 100 mL octanol (20). All KTZ formulations dissolved 
fast and reached 100% release in the gastric buffer at 
pH 2.0 (Fig. 4A). After pH change, drug concentrations 
significantly decreased to a plateau in the aqueous phase 
due to immediate precipitation and partitioning into the 
organic phase of drug. In contrast, the corresponding 
dissolution profiles in the organic phase differed, with a 
ranking of KTZ-lactose > KTZ-β-CD > KTZ-MCC (Fig. 4B). 
Thus, these KTZ formulations were well-discriminated in 
the organic phase of the pH-gradient biphasic dissolution 
test. KTZ-lactose showed the highest dissolution profile 
in the organic phase, which could be the result of 
maintaining the most free drug in the aqueous phase and 
quickly partitioning into the organic phase. The hydrogen 
bonds forming between KTZ and lactose could retard 
recrystallization, or the formation of smaller dispersed 
drug particles redissolve by de-agglomeration due to 

Figure 2.  Dissolution profiles (mean ± SD; n = 3) of three ketoconazole 
(KTZ) formulations under sink conditions (900 mL 0.1 N HCl): () KTZ-
lactose, () KTZ-β-CD, and () KTZ-MCC.

Figure 3.  Dissolution profiles (mean ± SD; n = 3) of three ketoconazole 
(KTZ) formulations under pH-gradient conditions (750 mL 0.1 N HCl for 2 h 
followed by a pH adjustment to 6.8 ± 0.05 with addition of 250 mL 0.2 M 
tribasic sodium phosphate solution) (dashed vertical line represents the pH 
change): () KTZ-lactose, () KTZ-β-CD, and () KTZ-MCC.
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the hydrophilicity of fine lactose (25, 27). Although β-CD 
had good solubilization for KTZ and displayed a slightly 
higher drug concentration in the aqueous phase, drug 
concentration in the organic phase was lower compared 
to KTZ-lactose. This was because solubilized drugs 
that form cyclodextrin complexation may have limited 
permeability due to the decreased free fraction of the 
drug available for membrane permeation (28, 29). 

Other studies have reported inconsistent results between 
in vitro dissolution and in vivo absorption (30, 31). 
Compared with lactose and β-CD, MCC as a hydrophobic 
carrier would be expected to perform inferiorly (32). 
Another reason could be immobilizing of KTZ molecules 
on the MCC surface by hydrogen bonding and facilitating 
heterogeneous nucleation owing to MCC having a 
heterosurface (33). Given the continuous concentration 
gradient between two phases, the differences of 
dissolution and precipitation kinetics in the aqueous 
phase could be magnified by the presence of an organic 
phase (15).

In Vivo Study 
To evaluate in vivo PK performance of  the three 
KTZ  formulations, a non-crossover study  in rats was 
conducted.  The  PK  parameters  are summarized  in  
Table 1.  Significant differences were found between the 
Cmax and AUC0-24h values of the three KTZ formulations 
(p < 0.05). The same rank order of drug release observed 
in the pH-gradient biphasic dissolution test (KTZ-lactose 
> KTZ-β-CD > KTZ-MCC) was consistent with the Cmax and 
AUC values of KTZ-MCC, KTZ-β-CD, and KTZ-lactose.

Formulation Cmax (µg/mL) AUC0-24h (µg h/mL) Tmax (h)

KTZ-MCC 1.52 ± 0.22a 12.61 ± 1.78a 2.60 ± 0.89

KTZ-β-CD 3.19 ± 0.46a,b 19.62 ± 3.11a,b 1.80 ± 0.34

KTZ-lactose 3.50 ± 0.41b 27.97 ± 4.41b 2.80 ± 0.45

In Vitro-in Vivo Correlation 
A level C in vitro-in vivo correlation (IVIVC) was tested 
using the percentage of KTZ dissolved in both aqueous 
and organic phases in the biphasic test at 3 h vs. an in 
vivo parameter (AUC or Cmax). No meaningful IVIVC was 
obtained in the aqueous phase at 3 h and AUC0-24h or Cmax 
(Figs. 5A and 5B); however, good linear relationships were 
obtained in the organic phase at 3 h and the in vivo Cmax 
(R2 = 0.96) and AUC0-24h (R2 = 0.92) (Figs. 5C and 5D). This 
pH-gradient biphasic dissolution system thus reflected 
both in vitro and in vivo dissolution kinetics of the three 
KTZ formulations with different excipients, and the 
release profiles from the organic phase could serve as an 
indicator for in vivo drug performance.

CONCLUSIONS 
Compendial dissolution tests lacked discrimination and 
in vivo prediction for three KTZ formulations, including 
the conventional pH-shift dissolution test. Conversely, 
the pH-gradient biphasic dissolution system showed 
discriminatory power for the KTZ formulations with 
different excipients. A good IVIVC was obtained between 
in vitro dissolution in the organic phase and in vivo 

Table 1. Pharmacokinetic Parameters for Three Ketoconazole (KTZ) 
Formulations in Rats After Oral Administration (45 mg/kg)

Values are expressed as mean ± SD, n = 5.
ap < 0.05 vs. KTZ-lactose; bp < 0.05 vs. KTZ-MCC

Figure 4. Dissolution profiles (mean ± SD; n = 3) of three ketoconazole (KTZ) formulations determined from the (A) aqueous and (B) organic 
phases in the pH-gradient biphasic dissolution test (gastric buffer pH 2.0 for 30 min followed by a pH adjustment to 5.5 ± 0.05 for 30 min, 6.5 ± 
0.05 for 2 h, and 6.8 ± 0.05 for 1 h, respectively) (dashed vertical lines represent the pH changes): () KTZ-lactose, () KTZ-β-CD, and 
() KTZ-MCC.
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performance in rats. The pH-gradient biphasic model has 
great potential for weakly basic BCS class II drugs in the 
early development of formulations.
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